Latitudinal and longitudinal dispersion of energetic auroral protons
نویسنده
چکیده
Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic ®eld has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300±350 km) and occurs during the ®rst few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading eect will not be as pronounced. This means that the ®rst few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.
منابع مشابه
Electron and proton aurora observed spectroscopically in the far ultraviolet
[1] The only way to get a global, instantaneous picture of the energetic particle input over the auroral oval is through spectral imaging. The major driver of auroral emissions in the high-latitude ionosphere is overall electron precipitation. However, for certain locations and times, such as the equatorial edge of the evening auroral oval, proton precipitation can be the major energy source an...
متن کاملFine structure of breakup development inferred from satellite and ground-based observations
More than 60 breakups, including weak activations of the pseudo-breakup type, moderate breakups, and events of very strong auroral activity, were analyzed using ground-based TV data, together with satellite auroral images. We studied the fine subvisual details of spatial and temporal dynamics of active auroral forms and surrounding diffuse luminosity, both in the longitudinal and latitudinal di...
متن کاملULYSSES COSPIN observations of the energy and charge dependence of the propagation of solar energetic particles to the Sun’s south polar regions
We present a first report of energetic charged particle observations at latitudes above 70ÆS from the COSPIN instruments on Ulysses during Ulysses’ recently completed pass over the Sun’s south polar regions. Solar energetic particles dominated the particle flux during most of the pass, and for > 30 MeV protons there was a close correspondence between intensity increases at IMP-8 near Earth and ...
متن کاملDetermining the mechanism of cusp proton aurora
Earth's cusp proton aurora occurs near the prenoon and is primarily produced by the precipitation of solar energetic (2-10 keV) protons. Cusp auroral precipitation provides a direct source of energy for the high-latitude dayside upper atmosphere, contributing to chemical composition change and global climate variability. Previous studies have indicated that magnetic reconnection allows solar en...
متن کاملRecurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close...
متن کامل